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Continuous time algorithm for Lyapunov exponents. I
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The Lyapunov exponent algorithm of Benettin et al. [C. R. Acad. Sci. Paris 286A, 431 (1978);
Meccanica 15, 9 (1980)] and of Shimada and Nagashima [Prog. Theor. Phys. 61, 1605 (1979)] is
converted to a continuous time algorithm. The Gram-Schmidt orthonormalization process is incor-
porated into the differential equations, making orthogonalization continuous. Differential equations
for the k-dimensional fiducial volumes are also derived. It is further shown that this algorithm is
a factorization of the fundamental matrix ® in the form ®(t) = E(t)W (t)E~(to), where E(t) is
orthonormal and W (t) is upper triangular. Numerical stability of the algorithm is considered, and
it is shown that the standard Gram-Schmidt process can be used to stabilize the (possibly) unstable
equations of motion for the orthonormal basis vectors. A numerical example is presented.

PACS numbers: 03.20.+i, 46.10.+z

I. INTRODUCTION

A nonlinear system of differential equations

& tx,1) 1)

can (at worst) be integrated numerically to produce a
trajectory x(xo,t), a function of time ¢, and the initial
conditions x(¢g) = xo at the starting time. Neighboring
trajectories obey the variational equations

of

5x=g{

5x = A(t)6x, (2)
x(t)

where 6x is the presumed infinitesimal displacement from
the reference orbit. These are a set of time-dependent lin-
ear differential equations, and their stability is governed
in the general case by their Lyapunov exponents.

The first successful algorithm for calculating the en-
tire spectrum of Lyapunov exponents is due to Benettin
and co-workers [1,2] and to Shimada and Nagashima [3].
We will term this method the “standard” algorithm for
calculating Lyapunov exponents. Another method for
calculating Lyapunov exponents propagates the exterior
products of reference solutions directly [4,5]. Although
these latter algorithms may be computationally more ef-
ficient, we will restrict our attention to the reformulation
of the “standard” algorithm.

We will (roughly) follow the notation of [3], although
the methods are virtually identical. They begin by in-
tegrating N reference solutions ug(t) to (2) over a finite
time interval 7, starting from initial conditions ug(tg) =
e (to), an orthonormal basis. At the end of the time in-
terval, the volumes of the k-dimensional parallelepipeds
(k=1,2,...,N) spanned by the vectors u(t) are calcu-
lated

k

N\ wi®)], (3)

Jj=1

WC:

where A is the outer product, and || || is a norm.

At this point, the vectors ug(t) are orthonormalized by
the Gram-Schmidt procedure. That is, new orthonormal
vectors eg(to + 7) are calculated according to

e;=uy/ || u |, (4)

er={uz —(uz-e)er}/||uz —(uz-er)ey ||, (5)

and, in general,

k=1 k-1
e = uk—Z(uk-ej)ej / uk_Z(Uk'ej)ej
j=1 j=1

(6)

The Gram-Schmidt procedure leaves invariant the
k-dimensional subspaces spanned by the vectors uj,
ug,...,ux in constructing the new k-dimensional sub-
space spanned by ey, eg, ..., €.

The integration is then reinitialized with new ug(to +
T) = er(to + 7), and carried forward to t = ty + 27.
The whole cycle is repeated over a long time inter-
val. Standard existence theorems guarantee that the k-
dimensional Lyapunov exponents are given by the limits

1 InVi(to + 47)
AR = lim —
rsoo T ; InVi(to + (5 — 1)7) (7)

and that these limits exist.

One potential problem with this algorithm is that all
vectors ui tend towards the direction in space associ-
ated with the largest positive Lyapunov exponent. If the
renormalization time 7 is too long, the Gram-Schmidt
procedure can fail, or become quite inaccurate. Thus, in
choosing 7 it helps to already know the largest positive
exponent. Some authors have gone so far as to recom-
mend renormalization after every time step. If this is to
be done, then renormalization is virtually a continuous
process. We explore this possibility in the next section.

Work of the U. S. Government

3686 Not subject to U. S. copyright



47 CONTINUOUS TIME ALGORITHM FOR LYAPUNOYV EXPONENTS. I

II. A DIFFERENTIAL GRAM-SCHMIDT
ALGORITHM

Begin the integration of u;, = A(t)u; with a set of
orthonormal unit vectors

u;(to) = e;(to) - (8)

Now, integrating over an infinitesimal time interval, from
to to to + 6t, we have

ui(to + 5t) ~ ei(to) + A(tg)e,- (to)(st . (9)

The u; are no longer orthonormal at ¢t = to + ét. To
reorthogonalize them, we invoke the standard Gram-
Schmidt algorithm.

For the first vector we have

e1(to + 6t) = uy(to + 6t)/ || wa(to + 1) || , (10)
where || || can be any Riemannian norm. Using the usual
Euclidean norm on rectangular coordinates, and using
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(9) to expand the norm to the first order in 6t, gives
[ ur(to +6¢) |7 ~| ex(to) ||

=3 [l ex(to) |72 2e1 - A(to)e1(to)st + O(6t%)

=1- el(to) . A(to)elét + O((Stz) (11)
since || e1(to) ||= 1. Inserting this into (10) and again
retaining only first-order terms yields
el(t() + (5t) ~ el(to) + A(to)el(to)(st

~[e1(t0) . A(to)e1 (to)]el(to)tst + O(6t2) .
(12)
Taking the term e;(¢o) to the right side, dividing by 6t,
and proceeding to the limit easily gives

iel = Ae; — (e - Aej) e

eg(to -+ 5t) = {uz(to -+ 6t) — [U2(t0 + 6t) . el(to + 6t)] e; (to + 6t)}

x || ua(to + 6t) — [uz(to + 6t) - e1(to + 6t)] e1(to + 6t) ||_1 .

Expanding to the first order again, the numerator of
this expression becomes

es + Aexbt — (e - Aeq) €16t — (e1 - Aeg) €16t + o(6t?).
(15)

Time notation has been suppressed above, since all quan-
tities are evaluated at t = to. Similarly, the denominator
expands to first order as

| --- |7t~ 1 — ez Aeabt + O(6t3). (16)

Inserting these results into (14) and proceeding to the
limit as before gives

éy = Aegy — (62 . Aeg) ey — (ez -Ae; +e; - Aez) e;
(17)

as the differential equation for ex(t). Proceeding recur-
sively in this manner, the general e(t) vector obeys the
equation of motion

zl—-t-ek = Ae, — (e - Aey) eg
k-1
- Z (ex - Aej +e; - Aey)e; . (18)
=1

The Gram-Schmidt orthonormalization process can thus
be reduced to a set of differential equations itself, and the
e, vectors can be propagated instead of the uy vectors.
One immediate benefit of this is that the volume of the
k-dimensional parallelepiped spanned by the vectors ej,
ey, ..., e at tg is very easy to calculate. Since Vi (to)
is just the k-dimensional unit cube, we have Vi (to) = 1.
The limit for the k-dimensional Lyapunov exponent is

13
7 (13)
as the differential equation satisfied by e; (t).
The second vector is normalized according to
(14)
[
1= (Vilti+7)
* = } . 1 k\li
A 'n.—l—vn;o nrT Z n { Vi (i) ’ (19)

=0

where the renormalization time interval is 7, and the
renormalization times t; = t,_;+7 are evenly spaced. We
have let the renormalization process become a continuous
process with time. Identifying 7 = 6t, this becomes

n—1
A®) — lim lz{ank(ti+6t)—ank(ti)}

oo
n—oo 1 £~ 6t

(20)

using the basic property of the logarithm. But in the
limit, this is just

A®) = lim ! ‘d In Vi (7)d
t—oo t — to to d'r k T
— lim —— {InVi(t) — In Vi (o)} , (21)
t—oo t — tO

where 7 is a variable of integration. This states that
the Lyapunov exponent is (quite literally) the average
logarithmic rate of increase of the volume V.

Some confusion might arise at this point, since it would
seem that Vi(t) = 1 for all time, since we have arranged
the e vectors to always be orthonormal. However, the
rate of change of V, must be computed with respect to the
ui vectors, since only they are solutions to the original
variational equations 1y = Aug. We have trivially

d 1d
Eank_ "7,6%

where we must calculate dVj/dt using the uy vector so-
lutions. Now, since

Vk ) (22)
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Vi = (ur-up)? (23)
we have easily

d 1 du;
aV}_ = ——2111 . W

since at the beginning of a time step we have u; = eq,
making V3 = 1, and of course using 013 = Au;.

At the beginning of a time step, V2 is just the unit
square, with sides aligned with the orthogonal uj,us
axes. Along its side parallel to the ug axis, it is gain-
ing area at the rate u; - 1;, while along its other face
its rate of change of area is just us - 1. Both faces, of
course, have unit length, and are perpendicular. So we
find

=e]- Ae1 (24)

d

Ez‘/z =€ -Ae1 +82'A62. (25)
Similarly, V3 is initially a unit cube, gaining or losing
volume at its three perpendicular unit area faces at the
rates ug - Uy = e - Aeg, where k = 1,2,3. In general,
then,

d k
EVk = ;ej - Ae; . (26)

Furthermore, since with respect to the e, basis we will
always have each fiducial volume equal to a unit k-
dimensional hypercube at the beginning of the time step,
we have

d d k
SInVe=—Vi= ;ej - Ae; . (27)

This remarkable equation accentuates the fact that linear
systems are scale invariant. That is, the rate of change of
In Vi should not depend on the absolute size of Vi, nor on
the scale of the uj solutions. Note that the derivatives
of the InV), are calculated directly from the variational
equations, not from allowing ug solutions to grow by a
(hopefully) manageable amount before renormalization.
We note in passing that in an N-dimensional space, this
states that

d InVy=V-f 28

E nvn = 1y ( )
where V- is the divergence operator, and f are the orig-
inal equations of motion.

We can now summarize the continuous time version of
the algorithm of Benettin and co-workers and Shimada
and Nagashima. The orthonormal basis vectors e, obey
the differential equations

%ek = Aep — (ex - Aeg) eg (29)
k—1
- Z (ex - Aej +e; - Aey)e;
j=1

while the fiducial volume elements obey
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d k
< 0V =;ej - Ae; . (30)

Initial conditions for the e, are not important so long
as they are orthonormal. The coordinate basis vectors
make an obvious choice. Initial conditions for the InV}

are trivially zero, since initially Vi, = 1. Then the k-
dimensional Lyapunov exponent is
1
®) — 1
A tl_lf& r— In Vi (t). (31)

The one-dimensional Lyapunov exponents A\ are related
to the k-dimensional exponents by

k
AR =3 ") (32)
j=1

So if the one-dimensional exponents are desired, Eq. (30)
is replaced by
d In S = e - Ae 33
77 0 Sk = ey - Aey (33)
with initial condition InSk(tg) = 0. Then the one-
dimensional Lyapunov exponents are given by

1
—to

A = tll.lglo 7 In Si(t). (34)

Since orthogonalization is continuous, this method
should not suffer from numerical problems of the previous
algorithms if the Gram-Schmidt step is delayed too long.
The e should stay bounded, relieving worries about the
u, vectors spanning many orders of magnitude. Only
the In V} are unbounded, and the existence of the limits
(31) says that their rates of growth should be linear with
time, not exponential. Compared to the original method,
then, we are propagating N2 4+ N differential equations,
instead of the N? differential equations of the standard
algorithm.

III. A MATRIX FACTORIZATION

The general solution to the variational equations (2) is
usually written as a matrix ®, termed the fundamental
matrix. It obeys

®=A@)®, B(to)=1I. (35)

Still further insight can be gained into this algorithm if
we consider the factorization of the fundamental matrix
P as

o(t) = EQW(1), (36)

where the matrix E(¢) is orthonormal, and the matrix
W (t) is upper triangular. [To be a proper factorization
of ®, we must either take E(to) = I, or modify (36) to
read E(t)W (t)ET (to). We will proceed assuming the for-
mer.] This factorization always exists if ® is nonsingular,
and a moment’s thought will show that the algorithm for
producing it is nothing but the Gram-Schmidt process.
Let the columns of ® [which are individually solutions
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to (2)] be ¢;(t). If the columns of E are e;, and if the
elements of W are

i—1
Wi = |6 — > (6i - ex) ex (37)
k=1
and
Wij=¢j'eia J>Zy (38)

then Eq. (36) is simply the Gram-Schmidt orthonormal-
ization. It is sometimes called the polar factorization of
a matrix, from its similarity to the polar decomposition
of a complex number.

Taking a time derivative of (36) and substituting into
the variational equations (35) gives

EW + EW = AEW . (39)

Or, a simple rearrangement yields

W= (ETAE - ETE) W=U®W, (40)

where the matrix U(t) is, as yet, unspecified. The fact
that E(t) is orthonormal means that its inverse is its
transpose. But we can now write the above as the pair
of matrix equations

W =UW (41)
and
ETE=ETAE-U. (42)

The above form is particularly interesting, since as an
orthonormal matrix we know that ETE must be a skew
symmetric matrix. To see this, take a derivative of
ETE = I, and rearrange to find

ETE = —ETE = — (ETE’)T . (43)

This shows skew symmetry, as claimed. .

Now, returning to (42), we can force ETE to be skew
symmetric if we choose U(t) upper triangular, with ele-
ments

Ui = (ETAE) (44)

i’

Uij = (BTAE),, + (BETAE),;, j>i. (45)
Then the matrices W and E obey the differential equa-
tions (41) and

E=AE—-EU. (46)

Since U is upper triangular, (41) will then keep W (t)
upper triangular. Similarly, (46) mandates that E(t) re-
main orthonormal, since we have arranged for ET E to be
skew. (Both of these are “mathematical” statements; see
the next section for a discussion of numerical behavior.)

Now, the reason for considering this factorization of ®
is that it is just the algorithm we have been considering.
Writing E in terms of its column vectors e;, the matrix
AEF has columns Ae;, and the matrix ET AE has elements
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(ETAE),; = e;- Ae;. Direct substitution into the differ-
ential equation for E, (46), reproduces (29), column by
column. The diagonal elements of W obey W;; = e;- Ae;.
Of course, this is just (33) in another guise. The solution
for Wu is

Wi (t) = Wii(to) exp {/t: e; - Aeidt} . (47)

This is the integrated form of (33), so the one-
dimensional Lyapunov exponents are given by

t
€e; - Ae,dt .

)\i= lim —
t Jio

Jim (48)
Finally, the upper elements of W can be expressed in
terms of convolution integrals. They are not needed if
only the Lyapunov exponents are being calculated; it is
then only necessary to propagate E and integrate the
diagonal elements of W.

IV. NUMERICAL STABILITY

The ex equations of motion (29) themselves consti-
tute a nonlinear system of differential equations, and it
is quite proper to inquire into their stability. The Gram-
Schmidt procedure has been incorporated into (29), but
it is now in a differential form. It is easy to verify from
(29) that (d/dt)(e; - €;) = 0 if and only if the e, are an
orthonormal basis. But numerical errors can cause the
e to wander away from a perfectly orthonormal state. If
the equations (29) themselves possess positive Lyapunov
exponents, the numerical errors will excite the instabil-
ity. It would be both impractical and uninteresting to
calculate Lyapunov exponents for our method. It is also
not necessary.

To check the orthonormality of the e; basis, the dot
products

ei'ej=5ij, 127, (49)
where 6;; is Kronecker’s delta, can be monitored on a reg-
ular basis as the integration proceeds. If the deviation of
e; -e; from §;; ever exceeds a set tolerance ¢, the normal
Gram-Schmidt procedure can be invoked, and the inte-
gration is then restarted. The Gram-Schmidt procedure,
of course, leaves invariant the k-dimensional subspaces
spanned by the old and new ex vectors. In this renor-
malization the additional contributions to the Vi can be
calculated in the normal manner, or if the tolerance ¢ is
small enough, they may be ignored.

This is possible since at the start of any time step the
volume element Vj is supposedly the unit k-dimensional
hypercube. If the unit vectors e;, ez, ..., e, spanning
this cube are out of orthogonality on the order of ¢, then
Vi is in error by the same order of magnitude. If the
tolerance € is set one or two orders of magnitude larger
than the expected integration error, then the corrections
to the value of Vj are of the same order of magnitude
as errors introduced by the integration itself. The InV}
grow roughly linearly with time, and in a long integration
are no longer of order unity. Errors of order € become less
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and less important as the integration proceeds. Finally,
the accuracy of the final Lyapunov exponents is typically
many orders of magnitude worse than the integration ac-
curacy, so some inaccuracy in the calculation of the In Vj,
is tolerable.

So, this method has not eliminated the (possible) ne-
cessity for Gram-Schmidt reorthogonalizations. How-
ever, they are used only as necessary to suppress nu-
merical instabilities in the e, equations of motion. They
are not used to calculate the Lyapunov exponents.

V. AN EXAMPLE

As an example, we consider the Lorenz problem [6]
with nonlinear differential equations

t=o(y—x),
y=(n—-2)z-y, (50)
z=zy—bz.

Following Shimada and Nagashima, we take 0 = 16, v =
40, and b = 4. This problem has several benefits for
testing a new algorithm. The divergence of the above
system is

V. f=—(0+b+1) (51)

which is constant throughout the space. So with our
parameters we already know A(®) = —21 from (28). Sec-
ond, as an autonomous system, a displacement u? =
(2(t),y(t), 2(t))éT along the state velocity vector (for
fixed 67) is an exact solution to (2). To see this, cal-
culate

df  of .

A K
1.39  1.40

1.38

1.37
I
F 3

A (2)

1.36

T T T T 1

0 1 2 3 4 5
x 1073

1/t

1.35

FIG. 1.

are driven by the chaotic nature of the underlying attractor.

Convergence of the one- and two-dimensional
Lyapunov exponents to a limit, vs inverse time. Oscillations

A
1
o
A
2
~
<
o —
1
S A
! 3
T T T T 1
0 1 2 3 4 5
x 1073
FIG. 2. Convergence of the one-dimensional Lyapunov ex-

ponents for the Lorenz problem. The much larger vertical
scale hides the oscillations.

for any autonomous system. So in any region in which
Z, ¥, and 2 are bounded, we will have one of the one-
dimensional Lyapunov exponents A;, Az, or A3 equal to
zero. The strange attractor we will be sampling exists
within a bounded region of space, and that bounds the
state derivatives.

Figure 1 shows the convergence of A(Y) and A(? for
the Lorenz system. The integration was performed to
t = 4000, and renormalization was found to be necessary
after time intervals of At =~ 1, with a normalization tol-
erance € = 10~7. In our method, the In V}, are defined as

™~
o~
"N —
-
. ©
N5 >\(1)
Yo
o~
™ 4
-
<t
™~
™ -
- (2)
2
™ A
™~
O?..‘
[aV]
™~
« T T
— 0 1 2
x 1074

1/t

FIG. 3. Convergence of the one- and two-dimensional
Lyapunov exponents for a longer integration. This plot shows
a great similarity to Fig. 1.
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continuous functions of time. As can be seen from Fig. 1,
the general trend has superimposed upon it a consider-
able amount of “noise.” [On the other hand, Fig. 1 plots
only AV and A(?)| because the convergence of A(®) with
our method, via Eq. (28), is exact after the first time
step, and never changes. This will not be true in systems
without constant divergence of f.] In reality these are os-
cillations about the sought-after mean value, and follow
the details of the actual trajectory through space (which
is usually chaotic). Their amplitude drops off roughly
like 1/t, which necessitates long integrations. Both A
and A(?) are clearly converging to a value near 1.37, which
is the value cited by Shimada and Nagashima. The fact
that A and A(® are approaching the same limit implies
that Ay = 0, as expected.

Figure 2 similarly shows the convergence of the one-
dimensional Lyapunov exponents, using the method in
the current paper. Again, convergence to previously
cited values is apparent. As a final result, we present
Fig. 3, which continues the integration from ¢ = 4000 to
t = 40000. The portion of the integration shown begins
where Fig. 1 ended. One cannot help being struck by
the self-similarity of the two plots, especially since the
vertical axis scale has been expanded by the same factor

of 10 used to expand the integration time scale. This
emphasizes the slow numerical convergence of this (and
all) Lyapunov exponent methods.

VI. CONCLUSIONS

‘We have shown that the “standard” algorithm for cal-
culating Lyapunov exponents possesses a true differential
form. Potential numerical instabilities in the propaga-
tion of the orthonormal basis vectors can be circumvented
by employing the Gram-Schmidt method when (and if)
needed.

We have also shown that the “standard” algorithm is
based on a factorization of the fundamental matrix. In
this it is similar to the solutions to the constant coeffi-
cient and periodic coefficient cases, which are also based
on factorizations of the fundamental matrix. The polar
factorization of the standard algorithm is purely real, in
opposition to the other two well-known cases. Wiesel
[7] has considered factoring ® into its eigenvectors and
eigenvalues, introducing another possible definition for
Lyapunov exponents which includes an imaginary part.
Exploration of further possible factorizations of ® is a
current research topic.
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